

ISSN 2348 - 8034 Impact Factor- 4.022

GLOBAL JOURNAL OF ENGINEERING SCIENCE AND RESEARCHES ONALMOST WEAK (SEMI WEAK) (SEMI STRONG)CJ-TOPLOGICAL SPACES

Narjis A. Dawood^{*1} & Suaad G. Gasim²

^{*1&2}Department of Mathematics - College of Education for Pure Science/ Ibn Al –Haitham- University of Baghdad

ABSTRACT

In this paper we introduced new types of spaces asalmost weak CJ-space, semi strong CJ-space and semi weak CJ-space. also we studied the relationship between them and the relation of them withalmost CJ-space and almost strong CJ-space, and the relation of them with almost CJ- space and almost strong CJ-space researched by N.A. Dawood and S.G. Gasim.

Keywords: almost CJ- space, almost strong CJ-space, almost semi- Strong CJ- space, almost weak CJ-space and almost semi- weak CJ-space.

I. INTRODUCTION

In [1] E.Michael introduced the concepts of J-space and strong J-space. A topological space X is a J-space if, whenever {A, B} is a closed cover of X with A \cap B compact, then A or B is compact. A space X is a strong J-space if every compact K \subset X is contained in a compact L \subset X with X L is connected. Michael also introduced three classes of spaces which are closely related to J-space and strong J-space, these spaces are semi strong J-space, weak J-space and semi weak J-space.

In this paper we introduced three types of spaces which are almost semi strong CJ-space, almost weak CJ-space and almost semi weak CJ- space.

Recall that, a space X is said to be compact if every open cover of X contains a finite subcollection that also covers X, and every closed subspace of a compact space is compact, see [2].

A topological space is said to be countably compact if every countable open cover of it has a finite subcover, see [3]. Also in [3] we can see that , a continuous image of a countably compact space is countably compact, and Countably compactness is weakly hereditary property.

Every compact space is countably compact. But the converse is not true, in general, see [4]. A connected space is a topological space X which cannot be represented as the union of two disjoint nonempty open sets. The continuous image of a connected space is connected, see [5].

A perfect map $f : X \to Y$ is a closed, continuous and onto map with $f^{-1}(y)$ compact in X for every $y \in Y$, see [6].

A map $f : X \to Y$ is called boundary - perfect if it is closed and if $\partial f^{-1}(y)$ is compact for every $y \in Y$, see [1]. All maps in this paper are continuous, and all spaces are assumed Hausdorff.

II. ALMOST SEMISTRONG CJ- SPACE, ALMOSTWEAK CJ-SPACEAND ALMOST SEMI WEAK CJ- SPACE

Definition 2.1: A topological space (X, τ) is an almostsemi strong CJ- space if every compact K \subset X contained ina countably compact L \subset X such that L \cup C = X for some connected C \subset X \K.

Definition 2.2: A topological space (X, τ) is said to be an almostweak CJ-space if, whenever $\{A, B, K\}$ is a closed cover of X with K compact and $A \cap B = \emptyset$, then A or B is countably compact.

Definition 2.3: A topological space (X, τ) is said to be an almostsemi weak CJ-space if, whenever Aand B are disjoint closed subsets of X with compact boundaries, then A or B is countably compact.

Synchronizing with this research we are studying another research, which includes two definitions, almost CJ-space and almost strong CJ- space, we will examine the relationship of our definitions of these two definitions and their relationship with each other. We start by mentioning the two definitions.

Definition 2.4: A space X is said to be almost CJ- spaces if, whenever $\{A, B\}$ is a closed cover of X with A \cap B compact, then A or B is countably compact.

Definition 2.5: A space X is said to be almost strong CJ- space if every compact $K \subset X$ is contained in a countably compact $L \subset X$ such that X\L is connected.

Lemma2.6: If B is a closed non- countably compact subset of any topological space X and $C \subset B$ is compact, then there is a closed non- countably compact $D \subset B$ with $D \cap C = \emptyset$.

Proof: Let \mathfrak{A} be a countably open cover of B with no finite subcover, and let $C \subset B$ be a compact, then \mathfrak{A} is an open cover of C. Pick a finite $\mathfrak{F} \subset \mathfrak{A}$ covering C. Then $D = B \setminus \bigcup \mathfrak{F}$ is a closed non-countably compact subset of B with $D \cap C = \emptyset$.

Theorem 2.7: Let X be any topological space, then the following conditions are equivalent:

- 1. X is an almost CJ-space,
- 2. For any A \subset X with compact boundary, cl(A) or cl(X\A) is countably compact,
- 3. If A and B are disjoint closed subsets of X with ∂A or ∂B compact, then A or B is countably compact,
- 4. If $K \subset X$ is compact, and if \mathcal{W} is a disjoint open cover of $X \setminus K$, then $X \setminus W$ is countably compact for some $W \in \mathcal{W}$.
- 5. Same as (4), but with card w = 2.

Proof:

(1) \Rightarrow (2): Let $A \subset X$ such that ∂A is compact. Note that $\{cl(A), cl(X \setminus A)\}$ is a closed cover of X with $\partial A = cl(A) \cap cl(X \setminus A)$ is compact, so cl(A) or $cl(X \setminus A)$ is countably compact by definition of almost CJ-space.

(2) \Rightarrow (3): Let A and B be disjoint closed subsets of X and suppose that ∂A is compact, it follows by (2) that cl(A) or cl(X\A) is countably compact. But cl(A) = A, and B is a closed subset of cl(X\A), so A or B is countably compact.

96

ISSN 2348 - 8034 Impact Factor- 4.022

(3) \Rightarrow (1): Let {A, B} be a closed cover of X with A∩B is compact, we have to show that A or B is countably compact. Suppose that B is non-countably compact and since A∩B⊂B is compact, so by lemma (2.6) there is a closed non- countably compact D⊂B such that D∩(A∩B)=Ø, it follows that D∩A=Ø. Thus A and D are disjoint closed subsets of X and ∂A is a closed subset of A∩B and thus compact. By (3) A or D is countably compact, but D is non- countably compact. Hence A must be countably compact.

 $(4) \Longrightarrow (5)$: Clear.

 $(5) \Rightarrow (4)$: Let $K \subset X$ be compact and let \mathcal{W} be a disjoint open cover of $X \setminus K$. To show that $X \setminus W$ is countably compact for some $W \in \mathcal{W}$ we shall follow three demarches.

First, we prove that if U is open subset of X containing K, then $w' = \{W \in w: W \not\subseteq U\}$ is finite. Suppose that it is not finite, then $w = W_1 \cup W_2$ with $W_1 \cap W_2 = \emptyset$ and $W_1 \cap w'$ and $W_2 \cap w'$ both finite.

Let $V_1 = \bigcup W_1$ and $V_2 = \bigcup W_2$, then $\{V_1, V_2\}$ is a disjoint open cover of $X \setminus K$, so by (5) $X \setminus V_1$ or $X \setminus V_2$ is countably compact, but $V_1 \subseteq X \setminus V_2$ and $V_2 \subseteq X \setminus V_1$ since V_1 and V_2 are disjoint. It follows that $cl(V_1) \subseteq cl(X \setminus V_2) = X \setminus V_2$ and $cl(V_2) \subseteq cl(X \setminus V_1) = X \setminus V_1$, so we get $cl(V_1)$ or $cl(V_2)$ is countably compact (since closed subset of countably compact is countably compact).

Suppose that $cl(V_1)$ is countably compact, then $C = cl(V_1) \setminus U$ is countably compact. Now let $w'_1 = W_1 \cap w'$, then w_1' covers **C** and each $W \in w'$ intersects **C**, so **C** is not countably compact since w_1' is infinite and disjoint, which is a contradiction. Hence w' is finite.

Second, we show that if cl(W) is countably compact for all $W \in \mathcal{W}$, then X is countably compact. Let V be a countably open cover of X, then V is a countably open cover of K, which is compact, so V has a finite subcover \mathcal{F} covers K. Let $U = \bigcup \mathcal{F}$, by step one we get a finite family $\mathcal{W}' = \{W \in \mathcal{W} : W \nsubseteq U\}$, so $\bigcup \{cl(W) : W \in \mathcal{W}'\}$ is countably compact and since V is a countably open cover of it therefore it is covered by some finite $\mathcal{E} \subset V$. But $\bigcup \mathcal{E} \subset V$ is finite and covers X, so X is countably compact.

Finally, let us show that X\W is countably compact for some $W \in \boldsymbol{w}$. If cl(W) is countably compact for all $W \in \boldsymbol{w}$, then X is countably compact by step (2) and since X\W is a closed subset of X, so X\W is countably compact. Suppose that there exists $W_0 \in \boldsymbol{w}$ such that $cl(W_0)$ is not countably compact.

Let $W^* = \bigcup \{W \in w : W \neq W_0\}$, then, $\{W_0, W^*\}$ is a disjoint open cover of $X \setminus K$, so $X \setminus W_0$ or $X \setminus W^*$ is countably compact, by (5). If $X \setminus W^*$ is countably compact, and since $cl(W_0)$ is a closed subset of $X \setminus W^*$, so $cl(W_0)$ is countably compact which is a contradiction, so $X \setminus W^*$ is not countably compact, it follows that $X \setminus W_0$ is countably compact.

 $(5) \Rightarrow (1)$: Let $\{A,B\}$ be a closed cover of X with $A \cap B$ compact, then $\{X \setminus A, X \setminus B\}$ is a disjoint open cover of $X \setminus A \cap B$, then by (5) $X \setminus (X \setminus A)$ or $X \setminus (X \setminus B)$ is countably compact, that is A or B is countably compact. Hence X is CJ-space.

97

ISSN 2348 - 8034 Impact Factor- 4.022

(1) \Rightarrow (5): Let K \subset X be compact and let $\{W_1, W_2\}$ be a disjoint open cover of X\K, then $\{X \setminus W_1, X \setminus W_2\}$ is a closed cover of X with $X \setminus W_1 \cap X \setminus W_2 = X \setminus (W_1 \cup W_2)$ compact, since $X \setminus K \subset W_1 \cup W_2$, and so $X \setminus (W_1 \cup W_2) \subset K$ which is compact and by the closed subset of compact space is compact. But X is almost CJ-space, so $X \setminus W_1$ or $X \setminus W_2$ is countably compact.

Theorem 2.8: Consider the following properties of a topological space (X, τ) ,

- a) X is an almost strong CJ- space.
- b) X is an almostsemi strong CJ- space.
- c) X is an almost CJ- space.
- d) X is an almost semi weak CJ- space.
- e) X is an almost weak CJ-space.

Then (a) \Longrightarrow (b) \Longrightarrow (c) \Longrightarrow (d) \Longrightarrow (e)

Proof: (a) \Rightarrow (b)

Suppose that X is an almost strong CJ- space and let $K \subset X$ be compact, then there exists a countably compact subset L of X such that $K \subset L$ and X\L is connected by definition of almost strong CJ-space. Pick C= X\L, then C is connected and $C \subset X \setminus K$ since $K \subset L$, and $C \cup L = X$. Hence X is an almost semistrong CJ-space.

 $(\mathbf{b}) \Longrightarrow (\mathbf{c})$

Let X be an almost semi strong CJ- space and let $\{A, B\}$ be a closed cover of X with $A \cap B$ compact, so there exists a countably compact $L \subset X$ such that $A \cap B \subset L$ and there exists a connected subset C of X with $C \subset X \setminus A \cap B$ and $C \cup L = X$ by definition of almost semi strong CJ- space. Note that

 $(A \cap C) \cap (B \cap C) = (A \cap B) \cap C = Ø$ since $C \subset X \setminus A \cap B$, and that

 $(A \cap C) \cup (B \cap C) = (A \cup B) \cap C = X \cap C = C$, so we get a disjoint closed cover $\{A \cap C, B \cap C\}$ of Cwhich is connected, therefor C must be in $A \cap C$ or in $B \cap C$, then $C \cap B = \emptyset$ or $C \cap A = \emptyset$, it follows that

 $B \subset X \setminus C \subset L \text{ or } A \subset X \setminus C \subset L$ which is countably compact, so A or B is countably compact.

$(\mathbf{c}) \Longrightarrow (\mathbf{d})$

Suppose X is an almost CJ- space and let A, B be two disjoint closed subsets of X with compact boundaries, then A or B is countably compact by Theorem (1.7) Thus X is almost semi weak CJ-space.

 $(\mathbf{d}) \Longrightarrow (\mathbf{e})$

Assume that X is an almostsemi weak CJ- space and let $\{A, B, K\}$ be a closed cover of X with K compact and $A \cap B = \emptyset$. But ∂A and ∂B are closed subsets of K since $A^c = B \cup (K \setminus K \cap A)$ and $\partial A = \partial A^c$, so $\partial A = \partial (B \cup (K \setminus K \cap A))$, so $\partial A \subset K \cap A \subset K$, similarly we can prove that $\partial B \subset K$, and thus ∂A and ∂B are compact, it follows by (d) that A or B is countably compact. Hence X is almost weak CJ- space.

Theorem 2.9: A locally compact space is an almost weak CJ- space if and only if it is an almost CJ-space.

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 4.022

Proof: By Theorem (1.8) every almost CJ- space is an almost weak CJ-space, suppose, then, X is a locally compact almost weak CJ- space, and let $\{A, B\}$ be a closed cover of X. But X is locally compact so $A \cap B \subset Int(k)$, for some compact $K \subset X$. Let $A^* = A \setminus Int(K)$ and $B^* = B \setminus Int(K)$, then $\{A^*, B^*, K\}$ is a closed cover of X with K compact and $A^* \cap B^* = \emptyset$, it follows by definition of almost weak CJ- space, that A^* or B^* is countably compact, then $A^* \cup K$ or $B^* \cup K$ is countably compact, so A or B is countably compact. But A and B are closed subsets of $A^* \cup K$ and $B^* \cup K$ respectively, so A or B is countably compact. Hence X is an almost CJ- space.

Proposition 2.10: If X is an almost CJ- space and $Z = X \cup \{Z_\circ\}$, then Z is an almost semi weak CJ- space.

Proof: Let A, B be two disjoint closed subsets of Z with compact boundaries, then $\mathbb{Z}_{\circ} \notin \mathbb{A}$ or $\mathbb{Z}_{\circ} \notin \mathbb{B}$. Suppose that $\mathbb{Z}_{\circ} \notin \mathbb{B}$ and let $\mathbb{E} = cl(X \setminus \mathbb{B})$, then $\{\mathbb{B}, \mathbb{E}\}$ is a closed cover of X with $\mathbb{E} \cap \mathbb{B} = \partial \mathbb{B}$ which is compact, so B or E is countably compact since X is almost CJ- space. But $\mathbb{A} \subset \mathbb{E} \cup \{\mathbb{Z}_{\circ}\}$, so A or B is countably compact, and thus X is an almost semi weak CJ- space.

Proposition 2.11: Let $\{X_1, X_2\}$ be a closed cover of a topological space X with $X_1 \cap X_2$ non- countably compact. If X_1 and X_2 are almost weak CJ- spaces, then so is X.

Proof: Let $\{A, B, K\}$ be a closed cover of Xwith $A \cap B = \emptyset$ and K is compact. To prove Aor B is countably compact, let $A_i = A \cap X_i$ and $B_i = B \cap X_i$ and $K_i = K \cap X_i$, for i=1,2. Then $\{A_i, B_i, K_i\}$ is a closed cover of X_i with $A_i \cap B_i = \emptyset$ and K_i is countably compact. Now by using the fact saying that X_1 is almost weak CJ- space, we get A_1 or B_1 is countably compact. Suppose that B_1 is countably compact, we claim that B_2 is also countably compact, for if B_2 is not countably compact, so A_2 must be countably compact since X_2 is an almost weak CJ- space, it follows that $C = A_2 \cup B_1 \cup K$ is countably compact, but $X_1 \cap X_2$ is a closed subset of C, so $X_1 \cap X_2$ must be countably compact which is a contradiction. Thus $B = B_1 \cup B_2$ is countably compact. Similarly we can prove that A is countably compact whenever A_1 is countably compact.

Proposition 2.12: Let $\{X_1, X_2\}$ be a closed cover of a topological space X with $X_1 \cap X_2$ non- countably compact. If X_1 and X_2 are almost semi strong CJ- spaces, then so is X.

Proof: Let $K \subset X$ be a compact and let $K_i = K \cap X_i$, then K_i is a closed subset of K, and thus compact subset of the almost semi strong CJ- space X_i , so there exists a countably compact subset L_i of X_i such that $K_i \subset L_i$ and there exists a connected subset C_i of X_i such that $C_i \subset X_i \setminus K_i$ and $L_i \cup C_i = X_i$ (for i=1, 2) by definition of almost semi strong CJ- space. Now let $L = L_1 \cup L_2$ and $C = C_1 \cup C_2$, so L is a countably compact subset of X with $K \subset L$ and $C \cup L = X$ and $C \subset X \setminus K$. It remains to show that C is connected, we need only cheek that $C_1 \cap C_2 \neq \emptyset$ since C_1 and C_2 are connected. Note that $X_1 \cap X_2 \setminus L \neq \emptyset$, for if $X_1 \cap X_2 \setminus L = \emptyset$, then $X_1 \cap X_2$ is a closed subset of L which is countably compact, so $X_1 \cap X_2$ is countably compact which is a contradiction. Also we have $X_i \setminus L \subseteq X_i \setminus L_i \subseteq C_i$, so $(X_1 \cap X_2) \setminus L \subseteq C_1 \cap C_2$, and thus $C_1 \cap C_2 \neq \emptyset$. Hence $C = C_1 \cup C_2$ is connected. Therefor X is an almost semi strong CJ- space.

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 4.022

Proposition 2.13:Let $f: X \to Y$ be an injective perfect map onto Y. Then, if X is an almost semi strong CJ-space, so is Y.

Proof: Let $K \subset Y$ be compact, then $K' = f^{-1}(K)$ is a compact subset of X since f is perfect. But X is an almost semi strong CJ- space, so there exists a countably compact $L \subset X$ such that $K' \subset L'$ and a connected $C' \subset X \setminus K'$ with $C' \cup L' = X$ by definition of almost semi strong CJ- space. Now let L = f(L') and C = f(C'), then L is countably compact and C is connected since f is continuous, moreover $K \subset L$ since f is surjective and $C \subset Y \setminus K$ since f is injective and clear that $L \cup C = Y$. Hence Y is an almost semi strong CJ-space.

Theorem 2.14: The following properties of a space X are equivalent:

- a) X is an almostsemi weak CJ-space.
- b) If $f: X \to Y$ is boundary-perfect, then $f^{-1}(y)$ is non- countably compact for at most one $y \in Y$.

Proof:(a) \Rightarrow (b)

Suppose that X is an almost semi weak CJ-space and $y_1 \neq y_2$ in Y, and let $A_i = f^{-1}(y_i)$ (for i=1, 2). Then A_1 and A_2 are closed subsets of X with $A_1 \cap A_2 = \emptyset$ and ∂A_1 , ∂A_2 are compact since f is boundary-perfect, so A_1 or A_2 is countably compact by definition of almost semi weak CJ-space.

(b) **⇒**(a)

Suppose A_1 and A_2 are disjoint closed subsets of X with compact boundaries. Define a relation R on X such that $x R y \Leftrightarrow x, y \in A_1$ or $x, y \in A_2$.

Then
$$[x] = \begin{cases} A_1 & \text{if } x \in A_1 \\ A_2 & \text{if } x \in A_2 \\ \{x\} & \text{if } x \notin A_1 \text{ and } x \notin A_2 \end{cases}$$

Let Y be the quotient space of X with respect to the relation R, and let $f: X \to Y$ be the quotient map, so f is a closed, continuous and onto map. Now to show that f is boundary- perfect, it is sufficient to prove that

$$\partial (f^{-1}(y)) \quad \text{is compact for each } y \in Y \quad . \quad \text{Let } y \in Y, \quad \text{then}$$

$$f^{-1}(y) = \begin{cases} A_1 & \text{if } x \in A_1 \\ A_2 & \text{if } x \in A_2 \\ \{y\} & \text{if } x \notin A_1 \text{ and } x \notin A_2 \end{cases}.$$

But ∂A_1 , ∂A_2 are compact by hypothesis and $\Box \{y\}$ is also compact, so f is boundary-perfect, and thus A_1 or A_2 is countably compact by (b). Hence X is an almost semi weak CJ-space.

(C)Global Journal Of Engineering Science And Researches

ISSN 2348 - 8034 Impact Factor- 4.022

REFERENCES

- 1. E. Michael, J-spaces, Topology and its Applications 102(2000) 315-339.
- 2. James R. Munkres, Topology A First Course, Prentice- Hall, 1974.
- 3. K. D. Joshi, Introduction to General Topology, New AGE International (p) Limited, Publishers, First Edition 1983, Reprint 2004.
- 4. T. Husain, Topology and Maps, Springer Science & Business Media, 2012.
- 5. S. C. Sharma, Topology Connectedness and Separation, Discovery Publishing House, First Published, 2006.
- 6. J. E. Vaughan, Jun- iti Nagata, K. P. Hart, Encyclopedia of General Topology, Elsevier, 2003.

